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NONLINEAR FETI-DP AND BDDC METHODS:
A UNIFIED FRAMEWORK AND PARALLEL RESULTS∗

AXEL KLAWONN† , MARTIN LANSER† , OLIVER RHEINBACH‡ , AND MATTHIAS URAN†

Abstract. Parallel Newton–Krylov FETI-DP (Finite Element Tearing and Interconnecting—
Dual-Primal) domain decomposition methods are fast and robust solvers, e.g., for nonlinear implicit
problems in structural mechanics. In these methods, the nonlinear problem is first linearized and
then decomposed into loosely coupled (linear) problems, which can be solved in parallel. By changing
the order of the operations, new parallel communication can be constructed, where the loosely
coupled local problems are nonlinear. We discuss different nonlinear FETI-DP methods which are
equivalent when applied to linear problems but which show a different performance for nonlinear
problems. Moreover, a new unified framework is introduced which casts all nonlinear FETI-DP
domain decomposition approaches discussed in the literature into a single algorithm. Furthermore,
the equivalence of nonlinear FETI-DP methods to specific nonlinearly right-preconditioned Newton–
Krylov methods is shown. For the methods using nested Newton iterations, a strategy is presented
to stop the inner Newton iteration early, resulting in an approximate local nonlinear elimination.
Additionally, the nonlinear BDDC (Balancing Domain Decomposition by Constraint) method is
presented as a right-preconditioned Newton approach. Finally, for the first time, parallel weak scaling
results for four different nonlinear FETI-DP approaches are compared to standard Newton–Krylov
FETI-DP in two and three dimensions, using both exact as well as highly scalable inexact linear
FETI-DP preconditioners and up to 131 072 message passing interface (MPI) ranks on the JUQUEEN
supercomputer at Forschungszentrum Jülich. For a model problem with nonlocal nonlinearities,
nonlinear FETI-DP methods are shown to be up to five times faster than the standard Newton–
Krylov FETI-DP approach.
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1. Introduction. Nonlinear domain decomposition methods (DDMs) are so-
lution methods for nonlinear problems where the decomposition into a number of
(loosely coupled) nonlinear problems on subdomains is performed before linearization.
This is opposed to traditional methods, where the problem is first linearized and then
decomposed into problems on subdomains. Reversing the order of linearization and
decomposition localizes the computational work and reduces the need for synchro-
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nization on modern parallel computers. As in linear DDMs, the nonlinear methods
typically need to incorporate a coarse problem to obtain scalability with respect to
the number of subdomains. Among such methods are the ASPIN (Additive Schwarz
Preconditioned Inexact Newton) method [9, 41, 25, 10, 24, 22, 21, 20], its multiplica-
tive version MSPIN [45], RASPEN (Restricted Additive Schwarz Preconditioned Ex-
act Newton) [15], nonlinear FETI-1 methods [50], and nonlinear Neumann–Neumann
methods [5].

We are concerned with nonlinear versions of the successful family of (linear) FETI-
DP (Finite Element Tearing and Interconnecting—Dual-Primal) [18, 17, 38, 39, 37, 40]
and (linear) BDDC (Balancing Domain Decomposition by Constraint) [14, 12, 46, 44,
47] methods. Nonlinear BDDC and FETI-DP methods were introduced in [28, 27].
BDDC and FETI-DP methods are known for their robustness and parallel scalabil-
ity: in 2009, weak parallel scalability was achieved for more than 65 000 cores in [38]
for (linear) FETI-DP. Very recently, in [1], weak parallel scalability was achieved
for almost half a million cores for a (linear) multilevel BDDC method. For nonlin-
ear FETI-DP methods, weak parallel scalability was already obtained (for nonlinear
elasticity problems) for more than half a million processor cores in [31], and, subse-
quently, for almost 800 000 processor cores [32]. This is currently the largest range of
scalability reported for any linear or nonlinear DDM.

Our approach to nonlinear preconditioning separates the two goals of precondi-
tioning for nonlinear problems. First, to improve the convergence of Newton’s method,
the preconditioned nonlinear operator should be close to a function for which New-
ton’s method converges quickly and with a large convergence radius. Here, nonlinear
preconditioning can thus also play a role similar to that of a globalization strategy.
But even if the nonlinear preconditioner is chosen such that the preconditioned non-
linear operator is close to a linear operator (resulting in Newton convergence in a
single iteration), this operator (and thus the tangent in Newton’s method) may still
be ill-conditioned. Hence, second, an additional linear preconditioner can be chosen
to obtain good convergence of the Krylov subspace iterative method used to compute
the Newton correction. If an additional standard globalization strategy is used (e.g.,
a Trust-Region-Newton method or Newton’s method combined with gradient descent
globalization), then the nonlinear preconditioner should enlarge the region where the
Newton step is accepted. Let us note that, for such methods, the conditioning does
influence the convergence speed of the gradient descent steps, and the smallest eigen-
value is related to the diameter of the region where the transition to Newton’s method
occurs [53, proofs of Theorems 10.14 and 14.14].

Therefore, here, the convergence of the globalized Newton method and of the
Krylov method are not completely unrelated.

In this paper, we review different versions of nonlinear FETI-DP methods. We
present them in a common framework, which can help us better understand their
respective performance for different nonlinear problems, and, later, test them making
use of a common software framework built on PETSc [3, 4].

2. A unified framework for nonlinear FETI-DP. In this section, we in-
troduce a new unified framework for the family of nonlinear FETI-DP methods,
introduced in [28] and extended in [31, 35], and thus a common notation for all
variants of nonlinear FETI-DP algorithms. In recent years, we have investigated
variants with different nonlinear elimination strategies as well as different strategies
to solve the linearized systems with exact and inexact linear FETI-DP methods;
see [27, 30, 31, 28, 33, 35]. All these methods can now be described as a single non-
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Fig. 1. Coupling of nonlinear local problems in the primal variables Π (black squares). Continu-
ity in the dual interface variables ∆ (red dots) is enforced by Lagrange multipliers λ. The remaining
interior variables I are represented by blue circles. The nonlinear preconditioning in NL-4 performs
exclusively on the interior variables (blue circles). In NL-3, the nonlinear preconditioning addi-
tionally executes on the dual interface variables (red dots). For NL-2 the nonlinear preconditioning
performs on all variables, which includes the primal variables (black squares).

linear FETI-DP algorithm using different nonlinear right-preconditioners M , which
describe nonlinear elimination processes. We hope that this can help to better under-
stand the performance behavior of the different methods for various problem settings;
see also section 5.

2.1. Spaces. Before we start with an abstract formulation of our framework
let us briefly recall the basic aspects of FETI-DP. The computational domain Ω is
geometrically subdivided into N nonoverlapping subdomains Ωi, i = 1, . . . , N, and
every subdomain is discretized by finite elements. The corresponding local finite
element spaces are denoted W (i), and the product space W := W (1) × · · · ×W (N).
The variables of the local solution vector u(i) can be partitioned into interior variables
u

(i)
I , dual interface variables u(i)

∆ , and primal interface variables u(i)
Π . The union of

interior and dual variables is usually referred to as u(i)
B = (u(i)

I , u
(i)
∆ ). The local right-

hand sides f (i) can be partitioned accordingly.
We also introduce the finite element space W̃ ⊂ W of finite element functions,

which are continuous in the primal variables (subdomain vertices or edge-constraints).
The Schur complement in the primal variables represents the coarse operator of FETI-
DP methods (see (19) and [52]) responsible for the global transport of information.
We have ũ = (uB , ũΠ) = (u(1)

B , . . . , u
(N)
B , ũΠ) ∈ W̃ and K̃(ũ) ∈ W̃ , where K̃ is

obtained from local subdomain operators by introduction of coupling (“glueing”) in
the primal variables ũΠ on the interface (see [28]) as in linear FETI-DP methods.
Here, the primal interface variables ũΠ are obtained from the local variables u(i)

Π by
assembly. The remaining dual interface variables are denoted u∆ = (u(1)

∆ , . . . , u
(N)
∆ ),

and the variables in the interior of subdomains are denoted uI = (u(1)
I , . . . , u

(N)
I ); see

also Figure 1. Analogously, we can assemble the local right-hand sides f (i) ∈W (i) to
f̃ ∈ W̃ . Furthermore, the space of Lagrange multipliers is defined as V := range(B),
where B is the standard linear FETI-DP jump operator and λ ∈ V .

2.2. Abstract formulation. Nonlinear FETI-DP methods are defined as iter-
ative methods to solve the nonlinear system

(1) A(ũ, λ) :=
[
K̃(ũ) +BTλ− f̃

Bũ

]
=
[

0
0

]
;
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1. Mapping: M : W̃ × V → W̃ × V .
2. M puts the current iterate into the neighborhood of the solution; see also [7].
3. M(ũ, λ) is easily computable compared to the inverse action of A(ũ, λ).

Fig. 2. Properties of the nonlinear preconditioner M for nonlinear FETI-DP methods.

see [28]. The (sparse) linear constraint Bũ = 0 enforces the continuity of the solution
across the subdomain interface for the nonprimal variables uB ; see [28] for the notation
and the details. Lagrange multipliers λ are used to decompose the nonlinear problem
into loosely coupled local nonlinear problems on subdomains. We always assume that
the coupling of the nonlinear subdomain problems introduced by the primal variables
ũΠ is sufficient to make the local problems (and the Jacobian DK̃) invertible. Such a
set of primal variables can always be found if the original, undecomposed problem is
invertible, and, importantly, the set is typically small. We denote the exact solution
of (1) by (ũ∗, λ∗). Usually, we obtain the system (1) from the minimization of a
nonlinear (e.g., hyperelastic) energy on the subdomains under a continuity constraint
on the subdomain interfaces; see [28, equation (2.4)].

Next, instead of simply linearizing (1), we first apply a nonlinear right-preconditio-
ner (i.e., inner preconditioner) M(ũ, λ) to the system (1). Subsequently, A(M(ũ, λ))
is linearized using Newton’s method. Our choices of M(ũ, λ) can be characterized
as different nonlinear elimination processes [43] and can be viewed in the context
of nonlinear right-preconditioning [11, 8] in Newton’s method. In fact, directly lin-
earizing (1), i.e., choosing M(ũ, λ) as the identity, leads to the method Nonlinear-
FETI-DP-1; see section 2.5.5. Finally, in each Newton step, the linearized system
is solved iteratively by a Krylov subspace method such as CG or GMRES following
the classical (linear) FETI-DP approach [52], and applying a (linear) Dirichlet-type
preconditioner [52] during the Krylov iteration.

We now describe different nonlinear FETI-DP methods [28, 27, 35] as solving the
nonlinear equation

(2) A(M(ũ, λ)) = 0

by an iterative scheme, e.g., typically by a Newton–Krylov method.
Linearizing in variables (ũ, λ) when applying Newton’s method to (2), we obtain

the iteration

(3)
[
ũ(k+1)

λ(k+1)

]
:=
[
ũ(k)

λ(k)

]
− α(k)

[
δũ(k)

δλ(k)

]
with a suitable step length α(k) and, from the chain rule, the Newton update

(4)
(
DA(M(ũ(k), λ(k))) ·DM(ũ(k), λ(k))

)[ δũ(k)

δλ(k)

]
= A(M(ũ(k), λ(k))).

In each Newton step, the nonlinear preconditioner is evaluated by computing

g(k) := M(ũ(k), λ(k)).

Note that the nonlinear preconditioner M should satisfy some properties or as-
sumptions in order to accelerate the computations; see Figure 2.

Moreover, when solving (2), we are in fact not interested in obtaining ũ∗∗ and λ∗∗

satisfying A(M(ũ∗∗, λ∗∗)) = 0, but, as in linear right-preconditioning, we are rather
interested in (ũ∗, λ∗) = M(ũ∗∗, λ∗∗).
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2.3. Local convergence analysis. The equivalence of the nonlinear FETI-
DP saddle point system (1) and the fully assembled original finite element problem
(e.g., (27)) has already been discussed in [28]. In this section, we provide a brief
discussion of the convergence behavior of nonlinear FETI-DP methods.

Assumption 2.1. Let U be an open neighborhood of our solution (ũ∗, λ∗). We
assume that A(ũ, λ) is continuously differentiable in U and that DA(ũ∗, λ∗) is a non-
singular matrix.

If Assumption 2.1 is satisfied, Newton’s method solving A(ũ, λ) = 0 will converge
for all initial values (ũ(0), λ(0)) ∈ U∗ ⊂ U to the solution (ũ∗, λ∗); see, e.g., Ortega
and Rheinboldt [49, section 10.2.2]. If DA(ũ∗, λ∗) is nonsingular, then, by introducing
a sufficient number of primal constraints, DK̃ is also nonsingular in u∗ and a small
neighborhood of u∗.

In the case of redundant Lagrange multipliers DA(ũ∗, λ∗) will be singular since
B will not have full rank. However, this will lead to the same Newton iterates ũ(k)

and thus the same convergence behavior as when using nonredundant multipliers.
More precisely, in remarks 1 and 2 in [42, section 2.5.2] it is proved by induction
that the Newton iterates (ũ(k)

1 , λ
(k)
1 ), which nonlinear FETI-DP delivers for a system

with nonredundant multipliers λ1 and the corresponding jump matrix B1, have the
relationship ũ

(k)
1 = ũ(k) and λ

(k)
1 = Rn1L

Tλ(k) to the iterates in the redundant case.
Here, Rn1 is a simple restriction matrix, and L is a nonsingular lower triangular
matrix fulfilling the property B = L

[
BT1 0

]T . Let us remark that of course λ(0)
1 =

Rn1L
Tλ(0) has to be fulfilled for the initial value, which is the case for our choice

λ(0) = 0 and λ(0)
1 = 0. Note that stopping criteria involving the updates δλ(k) have to

be avoided if redundant Lagrange multipliers are used, since in that case convergence
can only be guaranteed in W̃ . As mentioned above, we can guarantee ũ(k)

1 = ũ(k)

and thus also ũ∗
1 = ũ∗ for the solution in W̃ , but since Rn1L

T has a nontrivial kernel
we might obtain Newton updates δλ(k) with ||δλ(k)|| > 0 in the case of redundant
multipliers, even if convergence is already reached; see also [42, end of section 2.5.2].

Assumption 2.2. Let V ∗ be an open neighborhood of (ũ∗, λ∗). The function eval-
uation M(ũ, λ) is well defined and computable in V ∗ and M(V ∗) ⊂ U∗.

Under Assumption 2.2 we have for all iterates (ũ(k), λ(k)) ∈ V ∗ thatM(ũ(k), λ(k)) ∈
U∗, and thus, with Assumption 2.1 and the discussion above, the nonlinear FETI-DP
method converges for all initial values (ũ(0), λ(0)) ∈ V ∗ to the solution (ũ∗, λ∗). If V ∗

is larger than U∗, the convergence radius is increased.
The computational cost for the nonlinear preconditioners has to be assessed for

each M , separately, again relying on assumptions on local differentiability and invert-
ibility. For NL-2 and thus for M defined as in (21), we already provided a discussion
in [28].

2.4. Construction of four different variants. The choice of the nonlin-
ear preconditioner M(ũ, λ) is essential for the properties of the nonlinear FETI-DP
method. We will consider four different choices for the nonlinear preconditioner M ,
i.e.,

• linear preconditioner M (Nonlinear-FETI-DP-1 (NL-1); see also [27, 30, 31,
28, 33]),

• nonlinear preconditioning of ũ (Nonlinear-FETI-DP-2 (NL-2); see also [28]),
• nonlinear preconditioning of uB (Nonlinear-FETI-DP-3 (NL-3); see also [35]),
• nonlinear preconditioning of uI (Nonlinear-FETI-DP-4 (NL-4); see also [35]).
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For linear problems, all four methods are equivalent and basically reduce to the stan-
dard linear FETI-DP method.

We will now present all four methods in a common framework and later, in sec-
tion 4, will consider an important modification which, in our experience, can improve
the performance significantly.

2.5. Abstract formulation using partial nonlinear elimination.

2.5.1. Derivation of the method. We will now show how nonlinear FETI-DP
methods can be defined using partial nonlinear elimination.

Note that we restrict ourselves to nonlinear preconditionersM which are nonlinear
in ũ and linear in λ, i.e., we do not eliminate any Lagrange multipliers. Here, in fact,
the preconditioner is only the identity in λ. Therefore, our M always has the form

(5) M(ũ, λ) := (Mũ(ũ, λ), λ).

Classical linear FETI-DP methods are based on a decomposition of the variable
ũ into several subsets, such as, e.g., the decomposition of the interface variables uΓ
into dual variables u∆ and primal variables ũΠ.

The index sets can also be used for the construction of a nonlinear preconditioner
M . We will first discuss the general approach of a variable splitting in the nonlinear
context and then derive four different nonlinear FETI-DP variants, of which two
turn out to be identical to methods already introduced in [35]. Since the effect of
these nonlinear FETI-DP preconditioners can be interpreted as a partial nonlinear
elimination process, corresponding sets of variables ũE and ũL are introduced. Here,
the index E marks the set of variables which will be eliminated nonlinearly and L the
set of variables which will be linearized. Thus, we define the splitting

ũ = (ũE , ũL).

Analogously, we partition the jump operator B (see (1))

B = [BE BL] ,

and our system (1) then reads

(6) A(ũE , ũL, λ) =

 K̃E(ũE , ũL) +BTEλ− f̃E
K̃L(ũE , ũL) +BTLλ− f̃L

BE ũE +BLũL

 = 0.

We define a nonlinear preconditioner of the form

(7) Mũ(ũ, λ) := (MũE
(ũE , ũL, λ), ũL),

where MũE
(ũE , ũL, λ) is defined implicitly by the first line of (6); cf. [35, eq. (5)].

The variable ũE is thus eliminated from (6) by solving the nonlinear equation

(8) K̃E(MũE
(ũE , ũL, λ), ũL) +BTEλ− f̃E = 0

using Newton’s method; see subsection 2.5.2. Note that in fact MũE
(ũE , ũL, λ) =

MũE
(ũL, λ); i.e., MũE

is independent of its first argument ũE , which we only introduce
for convenience, such that DMũE

is a square matrix; see subsection 2.5.2. Replacing
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ũE in the second and third lines of (6) by MũE
(ũL, λ), we obtain the nonlinear Schur

complement

(9) SL(ũL, λ) :=
[
K̃L(MũE

(ũL, λ), ũL) +BTLλ− f̃L
BEMũE

(ũL, λ) +BLũL

]
.

The Schur complement system

(10) SL(ũL, λ) = 0

can now be linearized, i.e., solved by Newton’s method. The tangent DSL of SL can be
obtained from the chain rule and the implicit function theorem; see subsection 2.5.2.
Note that the nonlinearly preconditioned system (2) takes the form

A(M(ũ, λ)) = A(Mũ(ũ, λ), λ) = A(MũE
(ũL, λ), ũL, λ) =

(
0

SL(ũL, λ)

)
.

Let us now gather the building blocks necessary to implement Newton’s method ap-
plied to (10).

2.5.2. Computing the tangent. For each application of the preconditioner M ,
a nonlinear system

K̃E(gE , ũL) +BTEλ−f̃E = 0

has to be solved for gE ; cf. (5), (7), and (8). For the computation of

(11) g
(k)
E := MũE

(ũ(k)
E , ũ

(k)
L , λ(k)),

Newton’s method can be applied and yields the iteration

(12) g
(k)
E,l+1 := g

(k)
E,l −

(
DK̃(g(k)

E,l, ũ
(k)
L )EE

)−1 (
K̃E(g(k)

E,l, ũ
(k)
L ) +BTEλ

(k) − f̃E
)
,

which converges to g
(k)
E under sufficient assumptions always made throughout this

paper. Here, k is the index of the outer Newton iteration, and l is the index of the
inner Newton iteration.

Next, we assume the following partitioning of the tangent of K̃:

(13) DK̃(·) =

[
DK̃(·)EE DK̃(·)EL
DK̃(·)LE DK̃(·)LL

]
.

Obviously, we obtain

(14) g(k) = Mũ(ũ(k), λ(k)) =
(
g

(k)
E , ũ

(k)
L

)
.

We compute the derivative of MũE
from (8) with respect to the first variable ũE

and obtain

DũE
K̃E(MũE

(ũE , ũL, λ), ũL) ·DũE
MũE

(ũE , ũL, λ) = 0⇔ DũE
MũE

(ũE , ũL, λ) = 0,

assuming invertibility of DũE
K̃E (see subsection 2.3).

Computing in (8) the derivative with respect to ũL yields

DũE
K̃E(MũE

(ũE , ũL, λ), ũL)DũL
MũE

(ũE , ũL, λ)+DũL
K̃E(MũE

(ũE , ũL, λ), ũL) = 0,
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which is equivalent to

DũL
MũE

(ũE , ũL, λ)

= −
(
DũE

K̃E(MũE
(ũE , ũL, λ), ũL)

)−1
DũL

K̃E(MũE
(ũE , ũL, λ), ũL).

Computing in (8) the derivative with respect to λ yields

DũE
K̃E(MũE

(ũE , ũL, λ), ũL)DλMũE
(ũE , ũL, λ) +BTE = 0 or equivalently

DλMũE
(ũE , ũL, λ) = −

(
DũE

K̃E(MũE
(ũE , ũL, λ), ũL)

)−1
BTE .

Thus, the derivative of M(ũ(k)
E , ũ

(k)
L , λ(k)) (see (5) and (7)) with respect to (ũE , ũL, λ)

and using the notation from (13) is

DM(ũ(k)
E , ũ

(k)
L , λ(k))

=

 0 −DK̃−1
EE(g(k))DK̃EL(g(k)) −DK̃−1

EE(g(k))BTE
0 I 0
0 0 I

 .
Thus, the left-hand side of the Newton system (4) writes as

DA(g(k), λ(k)) ·DM(ũ(k), λ)

=

 DK̃EE DK̃EL BTE
DK̃LE DK̃LL BTL
BE BL 0

 0 −DK̃−1
EEDK̃EL −DK̃−1

EEB
T
E

0 I 0
0 0 I


=

 0 0 0
0 −DK̃LEDK̃

−1
EEDK̃EL +DK̃LL −DK̃−1

LEDK̃
−1
EEB

T
E +BTL

0 −BEDK̃−1
EEDK̃EL +BL −BEDK̃−1

EEB
T
E


=:

 0 0 0
0 DSLL DSLλ
0 DSλL DSλλ

 ;(15)

cf. [35, eq. (11)]. For better readability, we write DK̃ instead of DK̃(g(k)) and define
the operator

DSL(g(k)) :=
[
DSLL(g(k)) DSLλ(g(k))
DSλL(g(k)) DSλλ(g(k))

]
.

As a result of the chain rule and the implicit function theorem, the operator DSL is,
under sufficient conditions, the tangent of the nonlinear Schur complement SL defined
in (9).

As a result of (8) and (15), we can write the Newton update (4) as 0 0 0
0 DSLL(g(k)) DSLλ(g(k))
0 DSλL(g(k)) DSλλ(g(k))


 δũ

(k)
E

δũ
(k)
L

δλ(k)

 =

 0
K̃L(g(k)) +BTLλ

(k) − f̃L
Bg(k)

 .(16)

The iterations defined in (16) and in [35, eq. (10)] are equivalent as a consequence of
the chain rule and the implicit function theorem. This will later be sufficient to show
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Init: ũ(0) ∈ W̃ , λ(0) ∈ V
Iterate over k:

Compute:(
g(k), λ(k)

)
:=
(
Mũ(ũ(k), λ(k)), λ(k)

)
= M(ũ(k), λ(k))

/* Often requires solution of localized nonlinear problems */

If ||A(g(k), λ(k))|| sufficiently small
break; /* Convergence of nonlinear FETI-DP; small absolute resid-
ual; */

Solve the linearized system by a Krylov iteration as in a stan-
dard linear FETI-DP approach:(
DA(g(k), λ(k)) ·DM(ũ(k), λ(k))

) [ δũ(k)

δλ(k)

]
= A(g(k), λ(k))

Update: ũ(k+1) := ũ(k) − α(k)δũ(k)

Update: λ(k+1) := λ(k) − α(k)δλu(k)

End Iteration

Fig. 3. Nonlinear FETI-DP algorithm(s). We always use ũ(k+1) as initial value for the
computation of g(k+1).

that the methods defined in subsection 2.5.6, subsection 2.5.7, and subsection 2.5.8
below as NL-2, NL-3, and NL-4 are identical to the methods defined in [28, 27] and [35].

Note that M(ũ(k), λ(k)) is independent of ũ(k)
E ; however, we use ũ(k+1)

E as an initial
value for the computation of g(k+1); see Figure 3. Note that in efficient implementa-
tions the Schur complement DSL is never assembled and that eliminating the block
DK̃EE(g(k)) from DA(g(k), λ(k)) also leads to the Schur complement system (16).
Therefore, we typically replace the left-hand side in (16) by DA(g(k), λ(k)); i.e., we
will solve

(17)

 DK̃EE DK̃EL BTE
DK̃LE DK̃LL BTL
BE BL 0


 δũ

(k)
E

δũ
(k)
L

δλ(k)

 =

 0
K̃L(g(k)) +BTLλ

(k) − f̃L
Bg(k)

 ;

see subsection 2.5.6, subsection 2.5.7, and subsection 2.5.8 for details. This does
not affect the updates δũ(k)

L and δλ(k), but we obtain δũ
(k)
E , which can be useful,

and, moreover, inexact or inexact reduced FETI-DP methods can be constructed;
see subsection 2.6.

Now, we can summarize the different nonlinear FETI-DP methods described
in [27, 30, 31, 28, 33, 35] as a single algorithm; see Figure 3.

2.5.3. Some algorithmic details. Throughout this paper, we assume that the
primal space W̃ can be chosen such that DK̃(ũ) is invertible; see above. If that is
not the case for an iterate ũ(k), regularization may be necessary, or a gradient descent
step may replace the Newton step, as in standard globalization approaches.

In all nonlinear FETI-DP methods presented here, we have to solve systems with
a left-hand side of the type [

DK̃(ũ) BT

B 0

]
,
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where DK̃(ũ) can be sorted as follows:

DK̃(ũ) =

[
DK̃(ũ)BB DK̃(ũ)BΠ

DK̃(ũ)ΠB DK̃(ũ)ΠΠ

]
.

As before, the index set Π denotes the primal variables, and the index set B denotes
the union of the variables in the remaining interface (dual variables) and on the
interior of the subdomains. As in standard FETI-DP methods, the matrix DK̃(ũ)BB
has the block diagonal structure

(18) DK̃(ũ)BB =

 DK̃(1)(ũ(1))BB
. . .

DK̃(N)(ũ(N))BB

 ,
suitable for parallelization, where each block DK̃(i)(ũ(i))BB , i = 1, . . . , N, corre-
sponds to a single subdomain.

In nonlinear FETI-DP methods with exact solvers (see [27, 28]), a sparse factor-
ization of DK̃(ũ) is performed by first carrying out parallel, local, sparse factorizations
of the diagonal blocks DK̃(1)(ũ(1))BB , . . . , DK̃(N)(ũ(N))BB and, subsequently, by a
factorization of the primal Schur complement

(19) S̃ΠΠ := DK̃(ũ)ΠΠ −DK̃(ũ)ΠBDK̃(ũ)−1
BBDK̃(ũ)BΠ,

which constitutes the FETI-DP coarse operator. In inexact and inexact reduced non-
linear FETI-DP methods [31, 30, 33] an exact factorization of S̃ΠΠ can be avoided.
Instead, an algebraic multigrid (AMG) preconditioner is set up for S̃ΠΠ; see subsec-
tion 2.6.

2.5.4. Common approximation in right-preconditioned Newton. In right-
preconditioned Newton–Krylov the computation of DM−1 is sometimes avoided by
using a first order approximation of M (see [7]); i.e., instead of[

ũ(k+1)

λ(k+1)

]
=
[
ũ(k)

λ(k)

]
− α(k)

(
DM(ũ(k), λ(k))

)−1(
DA(ũ(k+ 1

2 ), λ(k+ 1
2 ))
)−1

A(ũ(k+ 1
2 ), λ(k+ 1

2 ))

the iteration[
ũ(k+ 3

2 )

λ(k+ 3
2 )

]
= M(ũ(k+1), λ(k+1))

≈M(ũ(k), λ(k))− α(k)
(
DA(ũ(k+ 1

2 ), λ(k+ 1
2 ))
)−1

A(ũ(k+ 1
2 ), λ(k+ 1

2 ))[
ũ(k+1)

λ(k+1)

]
= M−1(ũ(k+ 3

2 ), λ(k+ 3
2 ))

is used. This approach utilizes that the application (or approximation) of M−1 is
usually cheap. We, however, usually do not avoid DM−1: As a result of (2), our
methods can be seen as right-preconditioned Newton methods [7], where the tangent
is computed exactly and not approximately; see (4). However, in section 4, we will
approximate the action of M−1.
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2.5.5. Nonlinear-FETI-DP-1. We will now describe the four specific variants
of nonlinear FETI-DP. The NL-1 and NL-2 methods [28, 27] will be described first;
they constitute the two extreme cases of partial nonlinear elimination, i.e., no elimi-
nation (NL-1) and full elimination (NL-2).

We obtain Nonlinear-FETI-DP-1 (NL-1), as introduced in [28, 27], by choosing
the index sets E = ∅ and L = [I ∆ Π]. Then, M is the identity

M(ũ, λ) := (ũ, λ),

and g(k) := Mũ(ũ(k), λ(k)) (see (11)) reduces to g(k) := ũ(k).
We obtain DM(ũ(k), λ(k)) = I, and thus the linearized system (4) writes as

(20)
[
DK̃(ũ(k)) BT

B 0

] [
δũ(k)

δλ(k)

]
=
[
K̃(ũ(k)) +BTλ(k) − f̃

Bũ(k)

]
.

Equation (20) can be solved as in any inexact or exact FETI-DP-type method using a
standard (linear) preconditioner for the dual Schur complement. Thus, we can solve

B
(
DK̃(g(k))

)−1
BT δλ(k) = −Bũ(k) +B(DK̃(ũ(k))−1)(K̃(ũ(k)) +BTλ(k) − f̃)

by a Krylov method using the standard FETI-DP Dirichlet preconditioner MD [52].
As is standard, the operator (DK̃(g(k)))−1 is never formed explicitly, but its

application to a vector is computed by using parallel, local sparse LU-factorizations
and the solution of a small, globally coupled coarse Schur complement; cf. (18) and
(19), and also [28]. For more details, see subsection 2.5.3.

This method is the Nonlinear-FETI-DP-1 method (see [28, eq. (3.5)] or [27, eq.
(4)]). In practice, NL-1 often performs similarly to classical Newton–Krylov–FETI-
DP. The method can be improved by using an initial value computed from solving
the nonlinear problem K̃(ũ) = f̃ −BTλ; see [27, 30, 31, 28]. In our numerical results,
we always include the computation of this initial value.

2.5.6. Nonlinear-FETI-DP-2. We obtain Nonlinear-FETI-DP-2 (NL-2), as
introduced in [28, 27], by choosing the splitting E = [I ∆ Π] and L = ∅. Thus,
the preconditioner MũE

(ũE , ũL, λ) = Mũ(ũ, λ) is defined implicitly by

(21) K̃(Mũ(ũ, λ)) +BTλ− f̃ = 0;

see (8). The computation of g(k) := Mũ(ũ(k), λ(k)) (see (11)) is performed by applying
Newton’s method, which yields the iteration

(22) g
(k)
l+1 := g

(k)
l −

(
DK̃(g(k)

l )
)−1 (

K̃(g(k)
l ) +BTλ(k) − f̃

)
,

assumed to converge to g(k); cf. (12). Here, k is the index of the outer Newton iteration
(see (3), (4), and also Figure 3), and l is the index of the inner Newton iteration to
compute g(k), which is needed to compute the right-hand side of (4).

For NL-2, the system (17) reads

(23)
[
DK̃(ũ(k)) BT

B 0

] [
δũ(k)

δλ(k)

]
=
[

0
Bũ(k)

]
.

Again, we can now solve the Schur complement system

(24) B
(
DK̃(g(k))

)−1
BT δλ(k) = −Bg(k)
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using a Krylov method (and the standard FETI-DP Dirichlet preconditioner [52])
and setting δũ(k) := 0. This iteration, defined by (22) and (24), is equivalent to the
Nonlinear-FETI-DP-2 algorithm; cf. [28, eq. (3.17), (3.18), and (3.19)].

As observed in subsection 2.5, in practice, we propose solving (23) instead of (24).
Then, the update for the Lagrange multipliers δλ(k) is identical, but we additionally
obtain δũ(k), which can be used to update the initial value for the computation of
g(k+1). We can also apply inexact or inexact reduced FETI-DP methods without
changing the solution; see subsection 2.6.

The NL-2 approach corresponds to an exact nonlinear elimination of ũ, and we
have an outer and an inner Newton iteration; i.e., whenever a residual is evaluated in
the outer Newton iteration, a nonlinear system has to be solved by an inner Newton
iteration.

The next two nonlinear FETI-DP methods, NL-3 and NL-4, also have an inner
and an outer Newton iteration, but the inner Newton iteration is cheaper since, in
both cases, it does not include the coarse problem and its all-to-all communication.

2.5.7. Nonlinear-FETI-DP-3. We obtain Nonlinear-FETI-DP-3 (NL-3), as
introduced in [35], by choosing E := B = [I ∆] and L := Π. The precondi-
tioner MũE

(ũE , ũL, λ) is defined implicitly in (8). Thus, we immediately obtain
g(k) = (g(k)

B , ũ
(k)
Π ) and

g
(k)
B,l+1 := g

(k)
B,l −

(
DK̃(g(l)

B , ũ
(k)
Π )BB

)−1 (
K̃B(g(k)

B,l, ũ
(k)
Π ) +BTBλ

(k) − f̃B
)

from (12) and (14), converging to g(k)
B ; cf. [35, eq. (13)].

Since we have continuity in all primal variables, we can assume that BL := BΠ =
0.

Thus, the linearized FETI-DP system writes as

(25)

 DK̃(g(k))BB DK̃(g(k))BΠ BTB
DK̃(g(k))ΠB DK̃(g(k))ΠΠ 0

BB 0 0


 δũ

(k)
B

δũ
(k)
Π

δλ(k)

 =

 0
K̃Π(g(k))− f̃Π

Bg(k)

 .
In NL-3, local nonlinear problems in the variable ũB have to be solved. The resulting
computational work is completely local and also does not involve any operations on
the FETI-DP coarse space. This property offers the potential to reduce the number
of primal assembly processes and FETI-DP coarse solves, which can lead to improved
scalability.

2.5.8. Nonlinear-FETI-DP-4. We obtain Nonlinear-FETI-DP-4 (NL-4), as
introduced in [35], by choosing E := I and L := [∆ Π]. The preconditioner
MũE

(ũE , ũL, λ) is defined implicitly by (8). Thus, we immediately obtain g(k) =
(g(k)
I , ũ

(k)
Γ ) and

g
(k)
I,l+1 := g

(k)
I,l −

(
DK̃(g(k)

I,l , ũ
(k)
Γ )II

)−1 (
K̃I(g

(k)
I,l , ũ

(k)
Γ )− f̃I

)
from (12) and (14), converging to g

(k)
I . Therefore, the linearized FETI-DP system

writes as
(26) DK̃(g(k))II DK̃(g(k))IΓ 0

DK̃(g(k))IΓ DK̃(g(k))ΓΓ BTΓ
0 BΓ 0


 δũ

(k)
I

δũ
(k)
Γ

δλ(k)

 =

 0
K̃Γ(g(k)) +BTΓ λ

(k) − f̃Γ

Bg(k)

 .
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As in NL-3, local nonlinear problems have to be solved in each Newton step of NL-4,
but in NL-4 we only eliminate the interior variables ũI . Thus, the local solves are
cheaper compared to NL-3. As in NL-3, in the inner Newton iteration of NL-4 no
coarse problem is solved.

In addition to NL-3 and NL-4, other choices of E and L are possible. This includes
problem-adaptive choices, e.g., based on the norm of the local nonlinear residuals on
the interface or based on adaptive coarse space strategies for linear FETI-DP and
BDDC.

2.5.9. Remarks on the nonlinear preconditioners. We provide a brief dis-
cussion on the properties of the different nonlinear preconditioners M . All four pre-
conditioners obviously satisfy properties 1 and 2 from Figure 2 by definition of M .
Also, property 3 holds, since omitting the constraint Bu = 0 makes M clearly easier
to compute than A; compare the results for NK outer versus NL-2 inner, NL-3 inner,
and NL-4 inner in Figure 13.

The computationally cheapest preconditioner is, of course, the identity (see NL-1),
but it clearly does not give a good approximation of A. To compensate, a special initial
value ũ(0) is computed from the nonlinear problem K̃(ũ(0)) = f̃−BTλ(0) by a Newton-
type iteration, where λ(0) is some given initial value, often chosen as zero; see, e.g., [28].
The computational cost of this specific initial value is comparable to one application
of the preconditioner M in NL-2, which is the most expensive preconditioner. This
preconditioner also includes a nonlinear coarse problem. If a good coarse space is
chosen, M will be a good nonlinear preconditioner of A; i.e., M will be a good
approximation of the inverse of A. In the two remaining variants NL-3 and NL-4, the
computation of M only includes local solves and is thus computationally cheap and
embarrassingly parallel. However, M will only be a good nonlinear preconditioner for
A in NL-4 if the nonlinearities of the problem are strictly local to the subdomains; cf.
our numerical results in subsection 5.6.

2.6. Using algebraic multigrid (AMG) for the coarse problem of non-
linear FETI-DP methods. If an inexact (e.g., multilevel) solver is used for the
coarse problem of standard (linear or nonlinear) FETI-DP methods, then the solu-
tion is perturbed because the coarse problem is part of the operator and not part
of the preconditioner. Therefore, a different approach has been taken for (linear or
nonlinear) FETI-DP methods on very large scale parallel computers [31, 38].

In the outermost Newton iteration of all four of our nonlinear FETI-DP methods
a linear system of the form (DK̃(ũ))BB (DK̃(ũ))TΠB BTB

(DK̃(ũ))ΠB (DK̃(ũ))ΠΠ 0
BB 0 0

 ũB
ũΠ
λ

 = rhs1

is solved; see (17) and also (20), (23), (25), and (26). Here, rhs1 denotes the right-
hand side, which differs for the different nonlinear methods. In order to construct
FETI-DP methods which allow us to replace the exact factorization of the coarse
problem S̃ΠΠ (see (19)) by a single iteration of a multilevel preconditioner, one step
of linear block elimination of ũB is performed, resulting in[

S̃ΠΠ –(DK̃(ũ))ΠB(DK̃(ũ))−1
BBB

T
B

–BB(DK̃(ũ))−1
BB(DK̃(ũ))TΠB –BB(DK̃(ũ))−1

BBB
T
B

] [
ũΠ
λ

]
= rhs2;

cf. [36], where this idea was introduced. Now, a block triangular preconditioner for
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1. M : Ŵ → Ŵ ,
2. M puts the current iterate into the neighborhood of the solution (see also [7]),

and
3. M(x) is easily computable compared to the inverse action of A(x).

Fig. 4. Properties of the nonlinear preconditioner M .

saddle point systems is used (see [36, 31, 38]) in combination with GMRES. Alter-
natively, the well-known symmetric positive definite reformulation can be used with
conjugate gradients [6, 26, 36]. In our numerical experiments in section 5, we use one
iteration of BoomerAMG as a preconditioner for the S̃ΠΠ block in the block trian-
gular preconditioner and apply GMRES as a Krylov method. The lower right block
is preconditioned using the standard FETI-DP Dirichlet preconditioner [19, 52] as
in [36].

Using BoomerAMG [23] provides substantial leverage for the scalability of FETI-
DP methods: using special interpolations, BoomerAMG is parallel scalable for linear
elasticity problems for more than half a million cores [2].

3. Nonlinear BDDC framework. We can also consider nonlinear BDDC meth-
ods, introduced in [28], but we have to apply some generalizations to our framework.
Solving a nonlinearly right-preconditioned problem

A(M(x)) = 0

with a Newton–Krylov method and a linear preconditioner for the Krylov method can
be written as in Figure 5. The nonlinear FETI-DP methods can again be obtained by
defining x := (ũ, λ), the nonlinear function A as in (1), and M as before. Additionally,
we can now derive a nonlinear BDDC method. Since BDDC methods operate on the
assembled system, we now define

(27) A(x) = A(ū) := RTK(Rū)−RT f.

Here, K(Rū)− f = 0 contains the local and decoupled problems on the subdomains.
The variables in ū ∈ Ŵ are assembled on the interface, and R is the restriction from
the assembled (global) variables to the local subdomain variables. Thus, RT operates
as an assembly operator. We also define the restriction from the global interface to the
local interfaces by RΓ. A nonlinear right-preconditioner M for the assembled system
has to satisfy the properties given in Figure 4. With all these definitions Figure 5
defines the nonlinear BDDC approach.

3.1. Nonlinear BDDC. With Figure 5 in mind, we can derive the nonlinear
BDDC method introduced in [28] by defining the corresponding preconditioner M .
As in NL-4, we decompose all degrees of freedom into interior (I) and interface (Γ)
and obtain

A(ū) =
(
AI(Rū)
AΓ(Rū)

)
=
(
KI(Rū)− fI
RTΓKΓ(Rū)−RTΓfΓ

)
= RTK(Rū)−RT f.

We also split ū = (ūI , ūΓ) and define the nonlinear preconditioner M by

M(ū) := (MI(ū), ūΓ),
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Init: x(0)

Iterate over k:
Compute: g(k) := M(x(k))

If ||A(g(k))|| sufficiently small
break; /* Convergence of nonlinear right-preconditioned method */

Solve iteratively with some preconditioner:
DA(g(k))DM(x(k)) δx(k) = A(g(k))
Update: x(k+1) := x(k) − α(k)δx(k)

End Iteration

Fig. 5. Generalized nonlinear algorithm.

where MI(ū) is the solution of

(28) KI(MI(ū), RΓūΓ)− fI = 0.

Using

D(A(M(ū))) =
(

DKII(RM(ū)) DKIΓ(RM(ū))RΓ
RTΓDKΓI(RM(ū)) RTΓDKΓΓ(RM(ū))RΓ

)
,

DM(ū) =
(

0 −DK−1
II (ū)DKIΓRΓ

0 I

)
,

and

A(M(ū)) =
(

0
RTΓKΓ(RM(ū))−RTΓfΓ

)
,

we obtain the nonlinear BDDC method suggested in [28]. As in nonlinear FETI-DP
methods, we can remove the inner derivative DM(·) from the tangential system with-
out changing the update δū(k)

Γ of the interface variables, where δx(k) = (δū(k)
I , ū

(k)
Γ ).

The current iterate in the inner variables δū(k)
I again only serves as initial value for

the computation of g(k+1).
For numerical results for nonlinear BDDC, we refer the reader to [28, section 5.3].

3.2. Local convergence analysis for nonlinear BDDC. The necessary as-
sumptions and resulting convergence properties are similar to those discussed in sub-
section 2.3 for nonlinear FETI-DP methods.

Assumption 3.1. Let UBDDC be an open neighborhood of our solution ū∗. We
assume that A(ū) is continuously differentiable in UBDDC and that DA(ū∗) is a non-
singular matrix.

If Assumption 3.1 is satisfied, Newton’s method solving A(ū) = 0 will converge
for all initial values ū(0) ∈ U∗

BDDC ⊂ UBDDC to the solution ū∗; see, e.g., Ortega and
Rheinboldt [49, section 10.2.2].

Assumption 3.2. Let V ∗
BDDC be an open neighborhood of ū∗. The function evalu-

ation M(ū) is well defined and computable in V ∗
BDDC and M(V ∗

BDDC) ⊂ U∗
BDDC, with

U∗
BDDC as defined above.

Under Assumption 3.2, we have for all iterates ū(k) ∈ V ∗
BDDC that M(ū(k)) ∈

U∗
BDDC, and thus, with Assumption 3.1, the nonlinear BDDC method converges for

all initial values ū(0) ∈ V ∗
BDDC to the solution ū∗.
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g
(k)
0 = x(k) and l = 0

while ||AE(g(k)
l )|| > εI

Update with New-
ton’s method to g

(k)
l+1

l = l + 1
g(k) = g

(k)
l

end

g
(k)
0 = x(k) and l = 0
Jold = 1

2 ||A(g(k)
0 )||2

while ||AE(g(k)
l )|| > εI

Update with Newton’s
method to g

(k)
l+1

Compute Jnew = 1
2 ||A(g(k)

l+1)||2
if Jnew > τ Jold

g(k) = g
(k)
l

break while
else

eold = enew
end
l = l + 1
g(k) = g

(k)
l

end

Fig. 6. Left: Computation of M(x(k)). Right: Computation of M(x(k)).

4. Controlling the inner Newton iteration. Several of our methods exhibit
an inner and outer Newton iteration. In this section, we consider a strategy for
choosing the accuracy of the inner Newton iteration in these methods. It is based on
testing the reduction of the outer energy after each inner Newton step. We thus ensure
that the local nonlinear elimination process will not interfere with the outer energy
descent steps. We will see that this strategy enhances robustness and reliability and
can increase the convergence radius significantly. Some additional details can also be
found in [34].

It is a common globalization strategy for Newton-type methods to enforce a re-
duction of an energy, e.g., J(x) = 1

2 ||A(x)||2 in each iteration. If a condition on the
Newton direction is not met, then the Newton step is rejected and replaced, e.g., by
a gradient step. The step length is often controlled by a line search approach fulfill-
ing certain conditions, such as, e.g., the Armijo or Wolfe condition; see [48]. If such
descent strategies are applied for a nonlinear energy J , it seems desirable that the
application of a nonlinear preconditioner M after a descent step should not increase
the energy.

In our nonlinear FETI-DP and BDDC methods with an inner and an outer New-
ton iteration, the application of the nonlinear preconditioner M corresponds to a local
nonlinear elimination step performed by a local Newton iteration.

Using our notation from section 3, we can write the nonlinear elimination per-
formed by M (see (8) for FETI-DP and (28) for BDDC) as

AE(g(k)) = 0,

where g(k) = M(x(k)); see also Figure 6 (left). Therefore, in Figure 6 (left), we strive
to minimize the energy 1

2 ||AE(x)||2, but, unfortunately, we have no guarantee that we
will also obtain a reduction of the energy J(x) = 1

2 ||A(x)||2. Our idea is therefore to
stop the inner Newton iteration whenever a descent in the global energy corresponding
to J(g(k)

l+1) ≤ τJ(g(k)
l ) is not achieved and then set M(x(k)) := g

(k)
l ; see also Figure 6

(right). Throughout this paper 0 < τ ≤ 1 is set to 0.8.
This strategy corresponds to approximating M(x) by an M(x) which does not
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increase the energy J . Clearly, the approach never leads to an increased number of
inner Newton iterations. In an extreme case, already the first inner Newton step can
be rejected and M(x) reduces to the identity. In the context of nonlinear FETI-DP
methods, the latter case is identical to a step of the NL-1 method.

Let us remark that in the very first outer iteration we at least spend two iterations
in the computation ofM(x(0)) to improve the initial value x(0). Let us further remark
that, caused by the approximate solution of (8) or (28), the property (15) for FETI-
DP (and the corresponding property for BDDC) will generally not hold; i.e., DA·DM
will no longer be identical to the derivative of the nonlinear Schur complement. Also,
the first entry of the right-hand sides in (16) and (17) can no longer be assumed to be
zero. Therefore, we switch to an approximate tangential system and solve the linear
system

DA(M(x(k)))δx(k) = A(M(x(k)))

in each outer iteration. Nonetheless, at convergence all mentioned linear systems will
be identical.

We refer to nonlinear FETI-DP and BDDC methods using M as NL-ane-FETI-
DP (approximate nonlinear elimination FETI-DP) and NL-ane-BDDC. The different
nonlinear FETI-DP variants are denoted by NL-ane-2, NL-ane-3, and NL-ane-4. A
similar approach can be applied to the initial value computation often used in NL-1,
but we do not consider this variant here.

5. Numerical results.

5.1. Nonlinear model problems. As a model problem, we define the scaled
p-Laplace operator for p ≥ 2 by

α∆pu := div(α|∇u|p−2∇u).

We then consider

−α∆pu− β∆2u = 1 in Ω,
u = 0 on ∂Ω,

where α, β : Ω→ R are coefficient functions.
We would like to consider two types of problems—first, one with nonlinearities

completely contained in the interior of subdomains, and second, a problem where
nonlinearities have a global character.

For the problem type Localized Nonlinearities, we consider subdomains with in-
clusions defined by

α(x) =
{

1 if x ∈ ΩI ,
0 elsewhere, β(x) =

{
0 if x ∈ ΩI ,
1 elsewhere;

see Figure 7 (left) for a possible shape of the localized nonlinearities (nonlinear in-
clusions) ΩI in two dimensions. For Localized Nonlinearities in two dimensions, we
distinguish between the problem Standard Inclusions, where we exclusively consider
square subdomains with square inclusions, see Figure 7 (left), and the problem Non-
standard Inclusions, where the inclusions can have the shape of a rectangle, a cross, or
an ellipse (approximated on a regular grid); see Figure 8 (lower). For Standard Inclu-
sions we consider different rectangles and the unit square as computational domain Ω,
and for Nonstandard Inclusions we exclusively consider a curved domain; see Figure 8
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Ωi,η

Ωi,I

∆4u = −1

∆2u = −1

Ωi,C
i = 1, 2, 3

Ωi,R

Ωi,C
α∆4u = −1

∆2u = −1

Fig. 7. Left (localized nonlinearities): Subdomain Ωi with an inclusion Ωi,I surrounded by a
hull Ωi,η with width η. Define ΩI :=

⋃
i Ωi,I . Middle (nonlocal nonlinearities): Example for a

decomposition of Ω in N = 9 subdomains, intersected by 3 channels Ωi,C , i = 1, 2, 3. We define
ΩC =

⋃
i Ωi,C . Right: Subdomain Ωi with channel Ωi,C of width H

2 .

(lower). In three dimensions, we consider a cuboid domain Ω with centered spherical
inclusions (approximated on a regular grid).

For the problem type Nonlocal Nonlinearities, we consider two different arrange-
ments of nonlinearities. The first problem is called Channels, where we consider
subdomains with channels defined by

α(x) =
{

1e5 if x ∈ ΩC ,
0 elsewhere, β(x) =

{
0 if x ∈ ΩC ,
1 elsewhere,

where the channels ΩC are depicted in Figure 7 (middle and right) for the case of two
dimensions. The second problem is called Grid. Here, the nonlinearities have a more
global character compared to the Channels problem. The subdomains are intersected
by a grid of channels, which does not touch the boundary of the domain. It is defined
by

α(x) =
{

1 if x ∈ ΩG,
0 elsewhere, β(x) =

{
0 if x ∈ ΩG,
1 elsewhere,

where the grid ΩG is depicted in Figure 8 (left) for the case of two dimensions.

5.2. General remarks. In all our tables, we refer to the traditional Newton–
Krylov–FETI-DP method as the NK method and to the nonlinear FETI-DP variants
as before as NL-i, i = 1, . . . , 4 (see subsection 2.4), and NL-ane-k, k = 2, . . . , 4,
respectively (see section 4). For simplicity, we use linear finite elements, and we always
use a coarse space constructed from all primal vertices only. Of course, stronger coarse
spaces can also be used with nonlinear FETI-DP methods; see [28] for the effects of
different coarse spaces enforced by a transformation of basis approach in nonlinear
FETI-DP.

For all methods, we compare the execution time (exec. time). This includes the
time to assemble and to solve the problem. The lowest numbers are marked in bold.
To provide a fair comparison, we always compute the parallel efficiency using as a
base line the fastest of the five approaches on the smallest number of processor cores
considered. That implies parallel efficiencies below 100% for four of the five methods
already for the smallest computations.

To allow for a better interpretation of the computing times, for each method,
we provide the number of necessary factorizations of the FETI-DP coarse problem
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Ωi,Ch

i = 1, . . . , 4

Ωi,Cv
i = 1, . . . , 4

Fig. 8. Left: p-Laplace in yellow grid and Laplace in matrix material. Define ΩG :=
⋃
i Ωi,Ch

∪
Ωi,Cv . Right: Domain Decomposition with ragged edges. Bottom: p-Laplace in the Nonstandard
Inclusions and Laplace in matrix material for a curved domain.

S̃ΠΠ (denoted by “Coarse Factor.”), the number of local factorizations of DK̃BB or
DK̃II (denoted by “Local Factor.”), and the sum of the Krylov iterations over all
Newton steps (denoted by “Krylov It.”) in the tables; see also [28, 31]. For NL-1 and
NL-2 coarse factorizations are not only necessary in the main loop but also in the
computation of the initial value in NL-1 and in the inner loop in NL-2. Therefore,
we subdivide the number of necessary factorizations of S̃ΠΠ into coarse factorizations
in the outer loop (denoted by “out.”) and coarse factorizations in the computation of
the initial value or the inner loop (denoted by “in.”), respectively. For all nonlinear
methods the number of coarse factorizations in the main loop is equivalent to the
number of outer Newton steps.

The number of subdomains is identical to the number of message passing interface
(MPI) ranks in all our experiments. We formulate identical stopping criteria for all
our FETI-DP algorithms based on ũ: The global Newton iteration will be stopped if
the fully assembled nonlinear residual is smaller than εO. Newton iterations resulting
from systems of the form K̃ (Mu (ũ, λ)) + BTλ − f̃ = 0 (see (8) and (21)) will be
stopped if ||K̃ (Mu (ũ, λ)) + BTλ − f̃ ||L2 is smaller than the minimum of εI and the
norm of the fully assembled residual in the current outer iteration multiplied by 1e−2.
Using such a stopping criterion, we avoid unnecessary exactness in early outer Newton
iterations and still obtain a sufficiently exact solution at convergence. The values of
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εO ∈ {1e−8, 1e−12} and εI ∈ {1e−5, 1e−6, 1e−7} vary over different computations;
see the captions of the tables.

If not noted otherwise, we solve the linearized systems using the preconditioned
conjugate gradient method (PCG) as a Krylov space method. The tangential matrix
of the p-Laplacian is always symmetric positive definite if not evaluated in constant
functions. Since we always have zero Dirichlet boundary conditions and use a nonzero
initial value, we avoid the latter case and can safely use the PCG method. In case of
inexact reduced FETI-DP-type methods (see subsection 2.6), we choose GMRES as
a Krylov method, since the block-triangular preconditioner is not symmetric, and we
do not use the standard symmetric positive definite reformulation; cf. [6, 36]. For all
Krylov iterations, we use a relative residual tolerance of 1e−10, which might be overly
exact, especially in the first Newton steps. More advanced techniques to choose the
forcing terms in inexact Newton’s methods can be found in, e.g., [16], but this is not
the focus of this paper.

5.3. Computational platforms and implementation. We perform our com-
putations on a Tier-3, Tier-2, and a Tier-1/Tier-0 supercomputer of the German High
Performance Computing Pyramid:

• JUQUEEN (Tier-1/0): 458 752 Blue Gene/Q cores (PowerPC A2 1.6 GHz; 16
cores and 16 GB per node); 5.9 PFlops; operated by Jülich Supercomputing
Center (JSC) providing computing time for Germany and Europe; ranked
19th in the current TOP500 list (November, 2016).

• Taurus (Tier-2): 34 656 Xeon cores (2 020 nodes); 1.4 PFlops; operated by
Center for Information Services and High Performance Computing (ZIH) of
the TU Dresden providing HPC resources for Saxony; TOP500 rank 107
(November, 2016).

• MagnitUDE (Tier-3): 13 536 cores (Broadwell XEON E5-2650v4 12C 2.2GHz;
24 cores and 72 GB per node); 476.5 TFlops NEC Cluster; operated by Cen-
ter for Computational Sciences and Simulation (CCSS) of the Universität
Duisburg-Essen (UDE) providing computing resources for UDE; TOP500
rank 384 (November, 2016).

On Taurus, we use a Haswell XEON E5-2680v3 12C 2.5GHz processor partition with
24 cores and 64 GB memory per node.

We have implemented all nonlinear FETI-DP variants as well as the Newton–
Krylov–FETI-DP method in PETSc [3, 4] using a common software framework, i.e.,
making use of the same software building blocks. Thus, our comparison in terms of
runtime is fair. Note that we do not make use of the built-in BDDC implementation of
PETSc. For all local sparse factorizations, we use the latest version of UMFPACK [13].
The publication [31] provides details on the implementation which we build on.

5.4. Localized nonlinearities in two dimensions.

5.4.1. Standard exact FETI-DP methods. We first discuss standard linear
and nonlinear FETI-DP methods, i.e., using exact (sparse) solvers for the subdomains
and the coarse problem. We consider the model problem Localized Nonlinearities with
p = 4; see section 5. As a domain Ω we consider a rectangle (0, 1.5)×(0, 1) (see Tables 1
and 2) or the curved domain (see Table 3). As mentioned in subsection 5.1, we consider
Standard Inclusions in combination with the rectangle and Nonstandard Inclusions
in combination with the curved domain; see Figure 8 (lower) for the arrangement of
inclusions for 24 subdomains. For the nonlinear FETI-DP methods NL-2, NL-3, and
NL-4, the nonlinearities are completely contained in the index set E. As a result, we
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expect the inner Newton iterations in these methods to be effective in reducing the
number of outer Newton iterations. For the NL-1 method, which only has an outer
Newton iteration, the computation of the initial value takes the role of the inner
Newton iteration.

We consider subdomains with 160K degrees of freedom (H/h = 400) on magni-
tUDE (see Tables 1 and 3) and Taurus (see Table 2) using very similar settings; see
the captions of the tables. On magnitUDE, we use two MPI ranks per core (making
use of the hyperthreads for MPI processes) since the supercomputer has only 13 536
cores. We indeed observed, for our application, a modest performance gain of about
10 percent from using two MPI ranks per core on magnitUDE over the use of a single
MPI rank per core. We do not use threading. On Taurus, we use 24 576 MPI ranks
and cores.

In our experiments in Table 1, Table 2, and Table 3, NL-2 is the fastest method
and, especially, always faster than standard NK (Newton–Krylov) method. While
NL-4 is always slower than NK for a small number of MPI ranks, NK is the slowest
method beyond 96 ranks for Standard Inclusions. For Nonstandard Inclusions on the
curved domain NK and NL-4 have identical execution times for the largest test. In
fact, for large problems, the nonlinear FETI-DP methods NL-2, NL-3, and NL-4 are
about twice as fast compared to the traditional NK approach. As expected, this is
a result of a significantly reduced number of Krylov iterations (see “Krylov It.”) for
the nonlinear FETI-DP approaches compared to NK. This, in turn, is achieved by
investing more local work; see the number of local factorizations.

The NL-2 method has the most effective inner Newton iteration; i.e., the inner
iteration includes local elimination and global transport of information since weakly
coupled nonlinear problems are solved. Indeed, it achieves the largest reduction in the
number of Krylov iterations and the fastest computing times. In contrast, in the NL-3
and NL-4 methods no coarse problem has to be solved in the inner Newton iteration.
However, for the number of cores available on these Tier-2 and Tier-3 supercomputers,
the cost for the coarse problem does not seem to be significant enough; i.e., the savings
in the number of the sum of coarse solves (see “Coarse Factor.”) cannot compensate
for the higher number of local factorizations and Krylov iterations observed for NL-3
and NL-4.

The NL-1 method always gives results falling in between results of the NK method
and the other nonlinear methods. This is not surprising since, except for the compu-
tation of the initial value, it is algorithmically closely related to the NK method.

Note that, for 24 576 ranks, for both supercomputers, we see a significant drop
in parallel efficiency; e.g., for the NL-2 method the parallel efficiency decreases from
above 70 percent to below 50 percent. To obtain better scalability for a large number
of cores and ranks, in the next section, we therefore will switch to a multilevel solver
for the FETI-DP coarse problem, using the approach from subsection 2.6.

5.4.2. Scalability on a Tier-0 supercomputer. We now present results for
the European Tier-0 supercomputer JUQUEEN. The JUQUEEN supercomputer also
provides the German national Tier-1 level.

First, we use exact solvers for the subdomain problems and the coarse problem.
We use smaller subdomains to accommodate for the slower BlueGene/Q PowerPC
cores and the smaller amount of memory per core compared to the other x86-based
supercomputers. To make efficient use of the hardware threads of the Blue Gene/Q
processor, it is advisable to use threading or multiple MPI ranks per core since signif-
icant performance gains of almost a factor of two can be achieved [29]. We always use
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Table 1
Model problem Localized Nonlinearities – Standard Inclusions (see subsection 5.1). Nonlinear

FETI-DP algorithms compared to the more traditional Newton–Krylov–FETI-DP; domain Ω =
(0, 1.5) × (0, 1) decomposed into square subdomains; p = 4; H/h = 400; η = 20h; εI = 1e − 7;
εO = 1e−12; two MPI ranks per core; computed on magnitUDE.

Localized Nonlinearities - Standard Inclusions

2D; p = 4; H/h = 400; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 20 - 20 363 171.01s 63%
NL-1 23 11 12 224 142.64s 76%

24 3 844 001 NL-2 26 22 4 73 108.09s 100%
NL-3 40 0 5 91 148.77s 73%
NL-4 42 0 5 98 171.81s 63%
NK 19 - 19 499 191.08s 57%
NL-1 25 12 13 345 167.56s 65%

96 15 368 001 NL-2 27 23 4 105 119.05s 91%
NL-3 43 0 5 132 166.60s 65%
NL-4 37 0 5 144 164.66s 66%
NK 21 - 21 619 222.28s 49%
NL-1 25 12 13 351 176.12s 61%

384 61 456 001 NL-2 29 25 4 117 130.29s 83%
NL-3 43 0 5 144 173.42s 62%
NL-4 38 0 5 162 176.77s 61%
NK 24 - 24 738 265.48s 41%
NL-1 33 12 21 541 250.05s 43%

1 536 245 792 001 NL-2 30 26 4 120 136.43s 79%
NL-3 43 0 5 150 175.94s 61%
NL-4 41 0 5 168 190.05s 57%
NK 25 - 25 802 297.77s 36%
NL-1 29 15 14 411 219.46s 49%

6 144 983 104 001 NL-2 32 28 4 125 149.87s 72%
NL-3 47 0 5 157 196.45s 55%
NL-4 45 0 5 173 213.16s 51%
NK 26 - 26 871 485.9s 22%
NL-1 29 15 14 400 313.19s 35%

24 576 3 932 288 001 NL-2 35 31 4 127 225.31s 48%
NL-3 47 0 5 159 235.17s 46%
NL-4 43 0 5 177 240.28s 45%

two MPI ranks per core on JUQUEEN as, for our application, this makes the most
efficient use of the hardware threads; see also our JUQUEEN results in [29, 31]. The
results in Table 4 for up to 16 384 MPI ranks, using a square domain and Standard
Inclusions, are comparable to the ones presented in subsection 5.4.1 for magnitUDE
and Taurus.

As a result of the capable network of Blue Gene machines, for all methods, good
weak parallel scalability is achieved. All nonlinear methods perform significantly
better than the NK method; see also Table 4 and Figure 9.

An even better parallel scalability is prevented by the cost for exactly solving the
FETI-DP coarse problem. To obtain better scalability for and beyond 32 768 MPI
ranks, we apply an AMG preconditioner (see subsection 2.6) to the FETI-DP coarse
problem instead of using a sparse direct solver by applying an inexact reduced FETI-
DP approach. Using this approach, we obtain weak parallel scalability to 131 072
MPI ranks; see Table 5 and Figure 10.

Note that in the case of inexact reduced FETI-DP, additional Krylov iterations
have to be performed to solve the FETI-DP coarse problem using the BoomerAMG
preconditioner in the inner loop of NL-2 and the computation of the initial value of
NL-1; see also [31] for a detailed discussion. These iterations are computationally
cheaper than the Krylov iterations carried out in the outer loop and thus are counted
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Table 2
Model problem Localized Nonlinearities – Standard Inclusions (see subsection 5.1). Nonlinear

FETI-DP algorithms compared to the more traditional Newton–Krylov–FETI-DP; domain Ω =
(0, 1.5) × (0, 1) decomposed into square subdomains; p = 4; H/h = 400; η = 10h; εI = 1e−6;
εO = 1e−12; one MPI rank per core; computed on Taurus.

Localized Nonlinearities - Standard Inclusions

2D; p = 4; H/h = 400; exact FETI-DP; computed on Taurus
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 22 - 22 398 168.82s 71%
NL-1 27 14 13 256 152.76s 79%

24 3 844 001 NL-2 30 26 4 76 120.10s 100%
NL-3 44 0 5 95 163.01s 74%
NL-4 49 0 6 119 202.64s 59%
NK 24 - 24 636 209.14s 57%
NL-1 27 13 14 406 169.67s 71%

96 15 368 001 NL-2 31 27 4 111 127.64s 94%
NL-3 48 0 5 137 182.16s 66%
NL-4 50 0 6 176 211.86s 57%
NK 25 - 25 748 228.04s 53%
NL-1 26 13 13 418 168.70s 71%

384 61 456 001 NL-2 32 28 4 127 133.34s 90%
NL-3 50 0 5 154 189.63s 64%
NL-4 50 0 6 200 218.44s 55%
NK 24 - 24 781 282.94s 42%
NL-1 28 14 14 472 219.81s 55%

1 536 245 792 001 NL-2 35 31 4 132 161.50s 75%
NL-3 48 0 5 161 197.70s 61%
NL-4 50 0 6 210 238.76s 50%
NK 25 - 25 858 288.35s 42%
NL-1 29 15 14 479 218.34s 55%

6 144 983 104 001 NL-2 36 32 4 137 163.43s 74%
NL-3 52 0 5 166 213.98s 56%
NL-4 59 0 7 253 280.69s 43%
NK 27 - 27 975 598.40s 20%
NL-1 29 15 14 485 426.03s 28%

24 576 3 932 288 001 NL-2 38 34 4 140 348.10s 35%
NL-3 51 0 5 169 386.57s 31%
NL-4 53 0 6 223 436.51s 28%

separately and denoted by iterations in S̃ΠΠ in Table 5. Let us further remark that
we usually do not distribute the coarse problem to all available MPI ranks but, e.g.,
only to 2% of the 131 072 MPI ranks for the largest computation; details can again
be found in [31].

The results in Table 5 for the JUQUEEN supercomputer are qualitatively similar
to the results discussed previously. However, for a larger number of ranks, i.e., for
8 192, 32 768, and 131 072 ranks, the NL-3 method is the fastest algorithm as it com-
bines a cheap inner Newton iteration (without the need to solve a coarse problem)
with a low number of outer Newton iterations. Although the NL-4 method is very
similar to the NL-3 method, it is slower due to a significantly larger number of Krylov
iterations in the outer loop.

5.5. Localized nonlinearities in three dimensions. We now consider the
model problem Localized Nonlinearities in three dimensions with p = 4 and H/h = 30;
see Tables 6 and 7. The subdomain-centered spherical inclusions have a diameter
0.6H. The stopping criterion is not based on the norm of the nonlinear residual but
on the norm of the update δũ.

Again, all nonlinear FETI-DP methods reduce the number of Krylov iterations,
increase the local work, and are faster compared to NK. For 24 576 MPI ranks, the
fastest nonlinear methods (NL-2 and NL-3) are more than twice as fast as NK. As
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Table 3
Model problem Localized Nonlinearities – Nonstandard Inclusions (see subsection 5.1). New

nonlinear FETI-DP algorithms compared to the more traditional Newton–Krylov–FETI-DP; p = 4
and a weight of α = 1 inside the inclusion and p = 2 and β = 1 elsewhere; domain Ω is a curved
domain with a height of 0.1 and a width of 1.0; see also Figure 8 (bottom); decomposed into square
subdomains; H/h = 400; εI = 1e−5; εO = 1e−8; the stopping criterion is based on the norm of δũ;
two MPI ranks per core; computed on magnitUDE.

Localized Nonlinearities – Nonstandard Inclusions

2D; p = 4; H/h = 400; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 19 - 19 343 88.27s 60%
NL-1 20 11 9 138 60.92s 87%

24 3 844 001 NL-2 23 19 4 62 53.20s 100%
NL-3 40 0 6 92 84.67s 63%
NL-4 54 0 8 128 125.39s 42%
NK 21 - 21 568 116.85s 46%
NL-1 27 9 18 350 107.51s 49%

96 15 368 001 NL-2 31 26 5 107 75.58s 70%
NL-3 41 0 6 142 91.81s 58%
NL-4 50 0 9 229 135.84s 39%
NK 22 - 22 614 125.49s 42%
NL-1 26 10 16 332 101.88s 52%

384 61 456 001 NL-2 27 23 4 95 67.11s 79%
NL-3 33 0 6 150 79.95s 67%
NL-4 44 0 9 243 127.28s 41%
NK 25 - 25 729 152.78s 35%
NL-1 27 8 19 380 116.05s 46%

1536 245 792 001 NL-2 32 27 5 111 81.75s 65%
NL-3 37 0 6 155 89.88s 59%
NL-4 43 0 8 246 126.53s 42%
NK 20 - 20 610 136.54s 39%
NL-1 28 8 20 378 127.45s 42%

6144 983 104 001 NL-2 29 25 4 98 77.69s 68%
NL-3 36 0 6 157 92.28s 58%
NL-4 45 0 8 252 136.83s 39%

in two dimensions, we observe the expected decrease of coarse solves for NL-3 and
NL-4, but we already benefit thereof for a smaller number of MPI ranks. While
for the setting in Table 6, NL-4 appears to perform best and outpaces the other four
methods, NL-3 has the shortest runtime for the larger domain Ω = (0, 4)×(0, 4)×(0, 3)
considered in Table 7. The first observation is related to the smaller average time per
inner loop for NL-4 (see Figure 11), while the latter effect is related to the comparable
small number of outer Newton iterations in NL-3 in Table 7.

5.6. Nonlocal nonlinearities in two dimensions. We now consider our model
problem Channels (see subsection 5.1); see also Figure 7 (middle and right) for the
geometry.

Here, the nonlinearities are no longer restricted to a single subdomain each, and,
for this problem, the nonlinearity is not contained in the index set E for the NL-4
method. This is opposed to the NL-2 and NL-3 methods.

The results for a computation of our model problem on magnitUDE are presented
in Table 8 and Figure 12. Our expectations regarding a bad performance of NL-4 are
confirmed, and NL-4 performs even worse than NK. For the remaining nonlinear
FETI-DP methods, we obtain qualitatively similar results compared to tests with
localized nonlinearities; see Tables 1 and 2. Again, NL-2 is the fastest method, and
NL-3 just slightly catches up. Thus, the lower local work still outweighs the higher
number of coarse solves for NL-2, at least for this comparably small number of MPI
ranks.
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Table 4
Model problem Localized Nonlinearities – Standard Inclusions (see subsection 5.1). New non-

linear FETI-DP algorithms (NL-1,-2,-3, and -4) compared to the more traditional Newton–Krylov–
FETI-DP; domain Ω = (0, 1)× (0, 1) and H/h = 200 decomposed into square subdomains; η = 10h;
εO = 1e−12; εI = 1e−7; two MPI ranks per core; computed on JUQUEEN.

Localized Nonlinearities - Standard Inclusions

2D; p = 4; H/h = 200; exact FETI-DP; computed on JUQUEEN
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 21 - 21 443 236.96s 56%
NL-1 21 15 6 126 144.82s 91%

64 2 563 201 NL-2 23 20 3 66 131.68s 100%
NL-3 36 0 5 105 193.75s 68%
NL-4 38 0 6 135 227.14s 58%
NK 22 - 22 559 261.73s 50%
NL-1 22 15 7 180 160.37s 82%

256 10 246 401 NL-2 23 20 3 79 133.47s 99%
NL-3 37 0 5 127 201.16s 66%
NL-4 39 0 6 166 237.00s 56%
NK 24 - 24 660 294.08s 45%
NL-1 26 16 10 241 200.32s 66%

1024 40 972 801 NL-2 29 25 4 103 171.35s 77%
NL-3 38 0 5 134 207.26s 64%
NL-4 39 0 6 177 239.97s 55%
NK 26 - 26 770 336.14s 39%
NL-1 26 16 10 248 209.08s 63%

4096 163 865 601 NL-2 29 25 4 107 181.57s 72%
NL-3 39 0 5 139 215.60s 61%
NL-4 38 0 6 185 239.30s 55%
NK 27 - 27 823 403.87s 33%
NL-1 28 19 9 216 250.36s 53%

16384 655 411 201 NL-2 31 27 4 110 230.21s 57%
NL-3 41 0 5 141 239.12s 55%
NL-4 41 0 6 188 268.49s 49%

It is remarkable that the fastest nonlinear FETI-DP methods (NL-2 and NL-3)
are, both, more than five times faster than the traditional NK approach for the largest
problem in Table 8. Here, even the NL-1 method is more than twice as fast as NK.
Only the NL-4 method, with an index set E inappropriate for the problem, gives
results similar to those of NK. This illustrates that the choice of the elimination index
set E is critical.

5.7. Controlling the inner Newton iteration: Numerical results. For our
Grid problem, we consider a domain decomposition with ragged edges; see Figure 8
(right). Here, we present results for nonlinear FETI-DP methods with the additional
ability of controlling the accuracy of the inner Newton iteration (section 4) using
a sequential MATLAB implementation. The results are presented in Table 9. For
completeness, we also present the results of the corresponding traditional nonlinear
FETI-DP methods (see the numbers in brackets).

It turns out that NL-2 and NL-3 do not lead to convergence for and beyond 16
subdomains due to an insufficient coarse space, but NL-ane-2 and NL-ane-3 do not
suffer from this. Both methods perform quite similarly up to 16 subdomains, but for
a larger number of subdomains the nonlinear preconditioner of NL-ane-2 gets more
effective. Nevertheless, NL-ane-3 also ends up with smaller numbers of Newton steps
and Krylov iterations compared to NK and the closely related NL-1 method without
the computation of an initial value. For 256 subdomains NL-ane-2 saves more than
50% of Newton steps and more than 66% of Krylov iterations compared to traditional
NK.
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Fig. 9. Model problem Localized Nonlinearities – Standard Inclusions: Weak scalability of
nonlinear FETI-DP algorithms (NL-1,-2,-3, and -4) and the more traditional Newton–Krylov–FETI-
DP method (NK) on the JUQUEEN BlueGene/Q supercomputer at Forschungszentrum Jülich; data
from Table 4.

Fig. 10. Model problem Localized Nonlinearities – Standard Inclusions: Weak scalability of
new inexact reduced FETI-DP algorithms and the inexact reduced version of the more traditional
Newton–Krylov–FETI-DP algorithm on the JUQUEEN BlueGene/Q machine at Forschungszen-
trum Jülich; data from Table 5.

In contrast to NL-2 and NL-3, NL-4 converges to the correct solution for all
numbers of subdomains, but the numbers of outer Newton steps and Krylov iterations
are just slightly reduced compared to NL-1 without the computation of an initial
value and NK, due to the fact that the nonlinearities are not contained in the index
set E for NL-4. This, of course, also holds for NL-ane-4, and so the numbers of
Newton steps and Krylov iterations of NL-4 and NL-ane-4 are quite similar. The big
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Table 5
Model problem Localized Nonlinearities – Standard Inclusions (see subsection 5.1). Inexact

reduced nonlinear FETI-DP algorithms compared to the inexact reduced version of the more tra-
ditional Newton–Krylov–FETI-DP. Here, we consider as a domain Ω = (0, 2) × (0, 1) decomposed
into square subdomains; p = 4; H/h = 200; η = 10h; εI = 1e−6; εO = 1e−12; two MPI ranks per
core. Instead of the exact factorizations of S̃ΠΠ, we now have to set up an AMG preconditioner
for S̃ΠΠ several times. We also have one AMG application per GMRES iteration; computed on the
JUQUEEN supercomputer; also see Figure 10.

Localized Nonlinearities – Standard Inclusions

2D; p = 4; H/h = 200; inexact reduced FETI-DP; computed on JUQUEEN
MPI Problem Nonlin. Local AMG Krylov Execution Parallel

ranks size solver factor. setup it. time effic.

in. out. S̃ΠΠ Full
NK 16 - 16 - 341 178.98s 64%
NL-1 19 8 11 31 252 165.35s 69%

32 1 282 401 NL-2 20 17 3 63 71 114.06s 100%
NL-3 31 0 4 0 87 163.79s 70%
NL-4 34 0 5 0 112 198.37s 58%
NK 16 - 16 - 419 193.17s 59%
NL-1 20 9 11 41 319 181.79s 63%

128 5 124 801 NL-2 23 19 4 82 123 140.77s 81%
NL-3 34 0 5 0 137 189.46s 60%
NL-4 34 0 5 0 141 205.06s 56%
NK 18 - 18 - 511 230.17s 50%
NL-1 22 10 12 50 377 210.54s 54%

512 20 489 601 NL-2 25 21 4 98 137 155.68s 73%
NL-3 31 0 5 0 146 180.00s 63%
NL-4 33 0 5 0 150 204.74s 56%
NK 21 - 21 - 646 269.30s 42%
NL-1 24 11 13 55 444 230.64s 49%

2 048 81 939 201 NL-2 27 23 4 106 150 167.10s 68%
NL-3 31 0 4 0 122 172.22s 66%
NL-4 35 0 5 0 168 215.56s 53%
NK 22 - 22 - 692 289.56s 39%
NL-1 25 11 14 55 490 252.36s 45%

8 192 327 718 401 NL-2 29 25 4 117 156 183.34s 62%
NL-3 30 0 4 0 125 170.58s 67%
NL-4 32 0 5 0 172 205.25s 51%
NK 23 - 23 - 722 307.87s 37%
NL-1 26 12 14 60 472 259.02s 44%

32 768 1 310 796 801 NL-2 31 27 4 134 155 199.05s 57%
NL-3 30 0 4 0 121 176.47s 65%
NL-4 35 0 5 0 165 224.48s 51%
NK 24 - 24 - 766 371.68s 31%
NL-1 26 12 14 60 467 316.50s 36%

131 072 5 243 033 601 NL-2 35 31 4 153 160 278.56s 41%
NL-3 29 0 4 0 119 206.57s 55%
NL-4 38 0 5 0 165 281.22s 41%

difference between methods NL-4 and NL-ane-4 is the number of local factorizations
(inner Newton iterations), which is reduced by NL-ane-4 by more than 50%. Since
the number of local factorizations of NL-ane-4 is less than two times the number of
Newton steps, the elimination of uI reduces the global energy J just in some cases.
As a consequence, NL-ane-4 is quite close to NL-1 without computation of an initial
value.

Controlling the accuracy of the inner Newton iteration cannot reduce outer New-
ton steps or Krylov iterations when the elimination set E is inappropriate for the
problem, but it avoids unnecessary inner Newton steps. It also enlarges the con-
vergence radius of nonlinear FETI-DP methods and reduces the dependency on the
coarse space.

5.8. Better scalability in nonlinear methods from localizing work. The
nonlinear FETI-DP methods achieve their better scalability by localizing computa-
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Table 6
Model problem Localized Nonlinearities in 3D (see subsection 5.1). New nonlinear FETI-DP

algorithms compared to the more traditional Newton–Krylov–FETI-DP; domain Ω = (0, 1.5)×(0, 1)×
(0, 1) decomposed into cubic subdomains; p = 4; H/h = 30; centered spherical inclusions with
diameter 0.6H; εI = 1e−5; εO = 1e−8; two MPI ranks per core; computed on magnitUDE.

Localized Nonlinearities in 3D

p = 4; H/h = 30; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 17 - 17 804 464.92s 65%
NL-1 22 16 6 278 337.06s 89%

96 2 650 021 NL-2 23 20 3 146 302.91s 99%
NL-3 24 0 3 150 300.41s 100%
NL-4 30 0 4 161 377.07s 80%
NK 22 - 22 805 786.32s 38%
NL-1 27 20 7 580 480.00s 63%

768 20 967 241 NL-2 29 25 4 319 441.04s 68%
NL-3 31 0 4 308 446.72s 67%
NL-4 36 0 4 299 418.66s 72%
NK 27 - 27 2 437 1 085.29s 28%
NL-1 31 24 7 689 587.34s 51%

6 144 166 811 281 NL-2 33 29 4 377 540.86s 56%
NL-3 36 0 5 396 540.25s 56%
NL-4 41 0 4 344 490.25s 61%

Table 7
Model problem Localized Nonlinearities in 3D (see subsection 5.1). New nonlinear FETI-DP

algorithms compared to the more traditional Newton–Krylov–FETI-DP; we use the same settings as
in Table 6 except for Ω = (0, 4)× (0, 4)× (0, 3); computed on magnitUDE.

Localized Nonlinearities in 3D

p = 4; H/h = 30; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 13 - 13 430 316.93s 90%
NL-1 20 13 7 243 300.59s 95%

48 1 332 331 NL-2 24 20 4 110 307.18s 93%
NL-3 23 0 4 129 286.62s 100%
NL-4 35 0 6 179 425.14s 67%
NK 14 - 14 1 002 668.84s 43%
NL-1 22 14 8 568 543.11s 53%

384 10 512 661 NL-2 25 21 4 263 418.15s 69%
NL-3 23 0 4 372 381.35s 75%
NL-4 38 0 6 392 565.94s 51%
NK 17 - 17 1 560 704.02s 41%
NL-1 22 14 8 687 495.83s 58%

3 072 83 521 321 NL-2 24 20 4 330 410.92s 70%
NL-3 22 0 4 364 377.20s 76%
NL-4 40 0 6 515 565.37s 51%
NK 17 - 17 1 586 1 634.88s 18%
NL-1 23 15 8 673 988.49s 29%

24 576 665 858 641 NL-2 24 20 4 357 756.77s 38%
NL-3 23 0 4 371 613.18s 47%
NL-4 44 0 6 554 967.76s 30%

tional work. This is shown in Figure 13, where we present the average runtimes per
Newton step for the inner loops of the NL-2, NL-3, and NL-4 methods compared
to the traditional Newton–Krylov method. A Newton step of the Newton–Krylov
method has a cost comparable to an outer Newton step of the NL-1, NL-2, NL-3, or
NL-4 method.

It is apparent that the removal of the communication related to the operator B
(and BT ) leads to a significant reduction of the average time per Newton step. For
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Fig. 11. Model problem Localized Nonlinearities in 3D: Comparison of the weak scalability
behavior of the inner loops of NL-3 and NL-4. Here, we present the average runtime per Newton
step for computations performed on magnitUDE; see Table 7 for the complete results.

Fig. 12. Model problem Nonlocal Nonlinearities – Channels: Weak scalability of new FETI-
DP algorithms and the more traditional Newton–Krylov–FETI-DP algorithm on magnitUDE at
Universität Duisburg-Essen; the fastest nonlinear FETI-DP methods (NL-2 and NL-3) are more
than five times faster than the traditional NK approach; data from Table 8.

the methods NL-3 and NL-4, a much better parallel scalability is also achieved. For
the NL-2 method, the coarse operator (which is factored exactly in this computation)
results in a drop of the parallel efficiency for 32 768 cores. This can be avoided by
using a multilevel preconditioner for the coarse problem instead of a sparse direct
solver; see subsection 2.6. We can conclude that moving computational work from
the outer loop of nonlinear methods to the inner loop can reduce the computing times
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Table 8
Model problem Nonlocal Nonlinearities – Channels (see subsection 5.1). New nonlinear FETI-

DP algorithms compared to the more traditional Newton–Krylov–FETI-DP; p = 4 and a multi-
plicative weight of α = 1e5 inside the channels and p = 2 and β = 1 elsewhere; each subdomain
intersected by one channel; width of a channel is 1/2H; domain Ω = (0, 1.5) × (0, 1) decomposed
into square subdomains; H/h = 400; εI = 1e−7; εO = 1e−8; two MPI ranks per core; computed on
magnitUDE; also see Figure 12.

Nonlocal Nonlinearities - Channels

2D; α = 1e5; p = 4; H/h = 400; exact FETI-DP; computed on magnitUDE
MPI Problem Nonlinear Local Coarse Krylov Execution Parallel

ranks size solver factor. factor. it. time effic.
in. out.

NK 15 - 15 420 138.48s 85%
NL-1 21 11 10 367 139.23s 85%

24 3 844 001 NL-2 30 26 4 119 118.37s 100%
NL-3 53 0 4 115 183.39s 65%
NL-4 71 0 12 561 328.94s 36%
NK 13 - 13 1 171 230.88s 51%
NL-1 21 11 10 804 203.36s 58%

96 15 368 001 NL-2 30 26 4 265 144.75s 82%
NL-3 53 0 4 261 196.99s 60%
NL-4 76 0 13 1 818 531.38s 22%
NK 12 - 12 2 553 433.40s 27%
NL-1 19 10 9 1 193 252.97s 47%

384 61 456 001 NL-2 29 25 4 426 164.38s 72%
NL-3 44 0 4 424 196.16s 60%
NL-4 62 0 12 3 637 775.52s 15%
NK 11 - 11 4 041 692.55s 17%
NL-1 19 10 9 1 479 304.93s 39%

1536 245 792 001 NL-2 28 24 4 534 180.31s 66%
NL-3 46 0 4 497 217.84s 53%
NL-4 53 0 12 4 596 927.91s 13%
NK 11 - 11 4 698 856.28s 14%
NL-1 19 10 9 1 666 352.16s 34%

6144 983 104 001 NL-2 24 21 3 427 159.84s 74%
NL-3 31 0 3 385 163.69s 72%
NL-4 42 0 11 4 445 937.61s 13%

and improve scalability.

6. Conclusion. We presented a framework unifying all known nonlinear FETI-
DP and BDDC methods. At the same time, it was shown that these methods can
be interpreted as nonlinear right-preconditioned Newton–Krylov methods. We com-
pared the performance of five different variants, including standard exact FETI-DP
as well as highly scalable inexact reduced FETI-DP approaches, using our parallel
PETSc implementation. For two as well as three dimensional model problems with
localized nonlinearities, it was shown that nonlinear methods could be twice as fast
as traditional Newton–Krylov–FETI-DP. For certain model problems with nonlocal
nonlinearities, the nonlinear methods could even be more than five times as fast. In
most cases, the method denoted NL-2 (introduced in [28, 27]) performed best, but
for a large number of MPI ranks and subdomains the method denoted NL-3 (intro-
duced recently in [35]) outpaced the other methods. For the methods using nested
Newton iterations, we have also presented a strategy to stop the inner Newton iter-
ation early. The resulting algorithms using this approximate nonlinear elimination
(NL-ane) proved to be significantly more robust in many cases. Finally, convincing
scalability up to 131 072 JUQUEEN BlueGene/Q cores has been presented.
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Table 9
Model problem Nonlocal Nonlinearities – Grid (see subsection 5.1). New nonlinear FETI-DP

algorithms controlling the accuracy of the inner Newton iteration compared to the more traditional
Newton–Krylov–FETI-DP method and the closely related NL-1 method without computing the initial
value; numbers in brackets belong to the runs of the corresponding traditional nonlinear FETI-DP
method; div indicates no convergence; p = 4 and a weight of α = 1 inside the grid and p = 2 and
β = 1 elsewhere; see also Figure 8 (left); Ω = (0, 1)2; decomposed into square subdomains; N is the
number of subdomains; H/h = 16; εI = 1e−12; εO = 1e−12; one MPI rank per core; computed on
Schwarz.

Nonlocal Nonlinearities – Grid

2D; p = 4; H/h = 16; exact FETI-DP; computed on Schwarz
N Problem Nonlinear Local Coarse Krylov

size solver factor. factor. it.
in. out.

NK 11 - 11 599
NL-1 no Init 10 - 10 563

4 1 089 NL-ane-2 14 (59) 7 (48) 7 (11) 310 (480)
NL-ane-3 14 (76) 0 (0) 7 (14) 307 (805)
NL-ane-4 14 (32) 0 (0) 8 (9) 425 (470)
NK 13 - 13 1174
NL-1 no Init 12 - 12 1148

16 4 025 NL-ane-2 15 (div) 7 (div) 8 (div) 490 (div)
NL-ane-3 15 (div) 0 (div) 8 (div) 471 (div)
NL-ane-4 17 (34) 0 (0) 10 (9) 734 (712)
NK 15 - 15 1891
NL-1 no Init 14 - 14 1857

64 16 641 NL-ane-2 15 (div) 9 (div) 6 (div) 576 (div)
NL-ane-3 15 (div) 0 (div) 9 (div) 803 (div)
NL-ane-4 21 (44) 0 (0) 13 (12) 1421 (1365)
NK 17 - 17 2692
NL-1 no Init 16 - 16 2602

256 66 049 NL-ane-2 18 (div) 11 (div) 7 (div) 840 (div)
NL-ane-3 18 (div) 0 (div) 11 (div) 1221 (div)
NL-ane-4 23 (51) 0 (0) 15 (15) 2003 (2092)

Fig. 13. Model problem Localized Nonlinearities – Standard Inclusions (see subsection 5.1):
Comparison of the average time spent in the different loops of exact nonlinear FETI-DP versus
Newton–Krylov–FETI-DP. The inner loop (NL-2 inner, NL-3 inner, and NL-4 inner) represents
the nonlinear elimination step. The timings are for H/h = 200; εI = 1e−6; εO = 1e−12; Ω =
(0, 2)× (0, 1); computed on JUQUEEN. The computation of the initial value in NL-1 is not shown
here, as it has a cost comparable to that of the inner loop in NL-2.
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B. H. V. Topping and P. Iványi, eds., Civil-Comp Press, Stirling, UK, 2009, https:
//doi.org/10.4203/ccp.90.4.

[6] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting
from mixed approximations of elliptic problems, Math. Comp., 50 (1988), pp. 1–17, https:
//doi.org/10.2307/2007912.

[7] P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu, Composing scalable nonlinear alge-
braic solvers, SIAM Rev., 57 (2015), pp. 535–565, https://doi.org/10.1137/130936725.

[8] X.-C. Cai, Nonlinear overlapping domain decomposition methods, in Domain Decomposition
Methods in Science and Engineering XVIII, Lect. Notes Comput. Sci. Eng. 70, Springer,
Berlin, 2009, pp. 217–224, https://doi.org/10.1007/978-3-642-02677-5 23.

[9] X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM J.
Sci. Comput., 24 (2002), pp. 183–200, https://doi.org/10.1137/S106482750037620X.

[10] X.-C. Cai, D. E. Keyes, and L. Marcinkowski, Non-linear additive Schwarz preconditioners
and application in computational fluid dynamics, Internat. J. Numer. Methods Fluids, 40
(2002), pp. 1463–1470, https://doi.org/10.1002/fld.404.

[11] X.-C. Cai and X. Li, Inexact Newton methods with restricted additive Schwarz based nonlinear
elimination for problems with high local nonlinearity, SIAM J. Sci. Comput., 33 (2011),
pp. 746–762, https://doi.org/10.1137/080736272.

https://doi.org/10.1137/15M1013511
https://doi.org/10.1137/15M1013511
https://doi.org/10.1007/978-3-319-40528-5_6
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.4203/ccp.90.4
https://doi.org/10.4203/ccp.90.4
https://doi.org/10.2307/2007912
https://doi.org/10.2307/2007912
https://doi.org/10.1137/130936725
https://doi.org/10.1007/978-3-642-02677-5_23
https://doi.org/10.1137/S106482750037620X
https://doi.org/10.1002/fld.404
https://doi.org/10.1137/080736272


A UNIFIED FRAMEWORK FOR NONLINEAR FETI-DP AND BDDC C449

[12] J.-M. Cros, A preconditioner for the Schur complement domain decomposition method, in
Proceedings of the 14th International Conference on Domain Decomposition Methods
in Science and Engineering, O. W. I. Herrera, D. Keyes, and R. Yates, eds., National
Autonomous University of Mexico (UNAM), Mexico City, Mexico, 2003, pp. 373–380,
http://www.ddm.org/DD14.

[13] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,
ACM Trans. Math. Software, 30 (2004), pp. 165–195, https://doi.org/10.1145/992200.
992205.

[14] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy min-
imization, SIAM J. Sci. Comput., 25 (2003), pp. 246–258, https://doi.org/10.1137/
S1064827502412887.

[15] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear precondition-
ing: How to use a nonlinear Schwarz method to precondition Newton’s method, SIAM J.
Sci. Comput., 38 (2016), pp. A3357–A3380, https://doi.org/10.1137/15M102887X.

[16] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16–32, https://doi.org/10.1137/0917003.

[17] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: A dual-primal
unified FETI method, part I: A faster alternative to the two-level FETI method, Internat.
J. Numer. Methods Engrg., 50 (2001), pp. 1523–1544.

[18] C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition
method, Numer. Linear Algebra Appl., 7 (2000), pp. 687–714, https://doi.org/10.1002/
1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S.

[19] C. Farhat, J. Mandel, and F.-X. Roux, Optimal convergence properties of the FETI domain
decomposition method, Comput. Methods Appl. Mech. Engrg., 115 (1994), pp. 367–388,
https://doi.org/10.1016/0045-7825(94)90068-X.

[20] C. Groß, A Unifying Theory for Nonlinear Additively and Multiplicatively Preconditioned
Globalization Strategies: Convergence Results and Examples from the Field of Nonlinear
Elastostatics and Elastodynamics, Ph.D. thesis, Rheinische Friedrich-Wilhelms Universität
Bonn, Bonn, Germany, 2009.

[21] C. Groß and R. Krause, A Generalized Recursive Trust-Region Approach—Nonlinear Mul-
tiplicatively Preconditioned Trust-Region Methods and Applications, Tech. report 2010-09,
Institute of Computational Science, Universita della Svizzera Italiana, Lugano, Switzer-
land, 2010.

[22] C. Groß and R. Krause, On the Globalization of ASPIN Employing Trust-Region Control
Strategies—Convergence Analysis and Numerical Examples, Tech. report 2011-03, Insti-
tute of Computational Science, Universita della Svizzera Italiana, Lugano, Switzerland,
2011.

[23] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and
preconditioner, Appl. Numer. Math., 41 (2002), pp. 155–177, https://doi.org/10.1016/
S0168-9274(01)00115-5.

[24] F.-N. Hwang and X.-C. Cai, Improving robustness and parallel scalability of Newton method
through nonlinear preconditioning, in Domain Decomposition Methods in Science and
Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin, 2005, pp. 201–208,
https://doi.org/10.1007/3-540-26825-1 17.

[25] F.-N. Hwang and X.-C. Cai, A class of parallel two-level nonlinear Schwarz preconditioned
inexact Newton algorithms, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1603–
1611, https://doi.org/10.1016/j.cma.2006.03.019.

[26] A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty
term, SIAM J. Sci. Comput., 19 (1998), pp. 172–184, https://doi.org/10.1137/
S1064827596303624.

[27] A. Klawonn, M. Lanser, P. Radtke, and O. Rheinbach, On an adaptive coarse space and
on nonlinear domain decomposition, in Domain Decomposition Methods in Science and
Engineering XXI, J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund,
eds., Lect. Notes Comput. Sci. Eng. 98, Springer, Berlin, 2014, pp. 71–83, https://doi.org/
10.1007/978-3-319-05789-7 6.

[28] A. Klawonn, M. Lanser, and O. Rheinbach, Nonlinear FETI-DP and BDDC methods,
SIAM J. Sci. Comput., 36 (2014), pp. A737–A765, https://doi.org/10.1137/130920563.

[29] A. Klawonn, M. Lanser, and O. Rheinbach, Exasteel—computational scale bridging us-
ing a FE2TI approach with ex nl/FE2, in JUQUEEN Extreme Scaling Workshop 2015,
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Jülich Supercomputing Centre, J. Large-Scale Res. Facilities, 1 (2015), A1, https://doi.
org/10.17815/jlsrf-1-18.

[52] A. Toselli and O. Widlund, Domain Decomposition Methods—Algorithms and Theory,
Springer Ser. Comput. Math. 34, Springer-Verlag, Berlin, 2005.

[53] M. Ulbrich and S. Ulbrich, Nichtlineare Optimierung, Birkhäuser, Basel, 2012, https://doi.
org/10.1007/978-3-0346-0654-7.

https://doi.org/10.17815/jlsrf-1-18
https://doi.org/10.17815/jlsrf-1-18
https://doi.org/10.1007/978-3-0346-0654-7
https://doi.org/10.1007/978-3-0346-0654-7

	Introduction
	A unified framework for nonlinear FETI-DP
	Spaces
	Abstract formulation
	Local convergence analysis
	Construction of four different variants
	Abstract formulation using partial nonlinear elimination
	Derivation of the method
	Computing the tangent
	Some algorithmic details
	Common approximation in right-preconditioned Newton
	Nonlinear-FETI-DP-1
	Nonlinear-FETI-DP-2
	Nonlinear-FETI-DP-3
	Nonlinear-FETI-DP-4
	Remarks on the nonlinear preconditioners

	Using algebraic multigrid (AMG) for the coarse problem of nonlinear FETI-DP methods

	Nonlinear BDDC framework
	Nonlinear BDDC
	Local convergence analysis for nonlinear BDDC

	Controlling the inner Newton iteration
	Numerical results
	Nonlinear model problems
	General remarks
	Computational platforms and implementation
	Localized nonlinearities in two dimensions
	Standard exact FETI-DP methods
	Scalability on a Tier-0 supercomputer

	Localized nonlinearities in three dimensions
	Nonlocal nonlinearities in two dimensions
	Controlling the inner Newton iteration: Numerical results
	Better scalability in nonlinear methods from localizing work

	Conclusion
	References

