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Introduction
Advanced High Strength Steels (AHSS) provide a good combination of both strength and formability and are therefore applied extensively in the automotive
industry, especially in the crash relevant parts of the vehicle. Dual-phase (DP) steel is an example for such AHSS which is widely employed. The excellent
macroscopic behavior of this steel is a result of the inherent micro-heterogeneity and complex interactions between the ferritic and martensitic phases in the
microstructure. Thus, considering the microscale is indispensable for realistic simulations.

Scale Bridging by FE2-Framework (FE2TI)
The FE2-method as illustrated for the Nakajima
test in the box Forming Limit Curves on the right,
cf. [1, 2], is a direct multiscale method and pro-
vides a suitable numerical tool for radical scale
bridging. The macroscopic material model is re-
placed by averaged stresses and tangent moduli
on the microscale. We present our successfull FE2

implementation FE2TI developed in the EXAS-
TEEL project (SPPEXA), which we have scaled
to 458 752 cores and 1.8 × 106 MPI ranks of
JUQUEEN [3] and to the complete Mira (786K
cores) at Argonne National Laboratory [4] for hy-
perelasticity problems already in 2015. Inexact or
exact FETI-DP methods are used to solve the 3D
microscopic boundary value problems.

Parallel Scalability for a Realistic Setup Using a Parallel Macro Solver
If the macroscopic problem is large, a parallelization is necessary. We recently included the option to
use CG with a BoomerAMG preconditioner [5] on the macroscale instead of using sparse direct solvers.
Using 917,504 MPI ranks on the complete
JUQUEEN for a FE2TI production simulation
(unstructured RVEs, an J2-elasto-plasticity material
model, several load steps, a large macroscopic defor-
mation problem with 14K degrees of freedom), the
time to solution can be reduced by a factor of 1.3.
We also include a scaling graph for a similar realistic
setup.

Forming Limit Curves
The maximum formability of steels for different stress states
is summarized in a forming limit curve (FLC). The most
common material test to determine FLCs is the Naka-
jima test, where the rigid tool is the upper half of a sphere
and the sheet metal is clamped between blank holder and
die; see below for an illustration.

To predict the FLC of a given microstructure,
the contact formulation in the context of FE2

is indispensable.

Frictionless Contact - The Penalty Method
• Use of penalty method does not increase the number of unknowns
• Larger penalty parameter εN > 0 enforces contact constraints more precisely but increases condition

number
• Only contact constraints in normal direction
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~n(ȳ) = ~p
||~p||

ȳ
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(x− ȳ) · ~n(ȳ) if (x − ȳ) · ~n(ȳ) < 0
0 otherwise.

Active contact constraints add 1
2
∫
Γc
εN(ḡN)2 dA to the energy functional; see [6].

Isoparametric Contact Element
With quadratic shape functions, additional terms
in the rhs and stiffness matrix for an active FE-
node i:
rhsi =

∫ 1
−1
∫ 1
−1 εN · gN (ξ, η) ·Ni(ξ, η) · ~n dξ dη,

Kik =
∫ 1
−1
∫ 1
−1 εN Ni(ξ, η) Nk(ξ, η) · ~n~nT dξ dη.

Numerical Results
We have performed a simulation with a specimen
of the Nakajima test on magnitUDE using the FE2

method with direct solvers on the microscale.

• Comp. time ≈ 10h
• MPI ranks: 4860 ( )

• εN = 500
• rTool = 59

• Macro: 118× 33.34× 2 with 12× 5× 3 Q2 FE
• Micro: 941 P2 FE, spherical inclusion (r = 0.3)

use of
symmetry

Load step
1 417 614

Sphere 0.1 27.35 30.38

Center Displ. z 8.52e-2 27.06 29.51
top vonMises 37.05 708.91 807.97

Center Displ. z 8.52e-2 27.33 30.44
bottom vonMises 30.79 699.85 812.03
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